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Abstract
Obesity	is	an	increasing	global	health	concern	and	is	associated	with	a	broad	range	
of	morbidities.	The	gut	microbiota	are	increasingly	recognized	as	important	con-
tributors	to	obesity	and	cardiometabolic	health.	This	study	aimed	to	characterize	
oral	and	gut	microbial	communities,	and	evaluate	host:	microbiota	interactions	
between	clinical	obesity	classifications.	We	performed	16S	rRNA	sequencing	on	
fecal	 and	 salivary	 samples,	 global	 metabolomics	 profiling	 on	 plasma	 and	 stool	
samples,	and	dietary	profiling	in	135	healthy	individuals.	We	grouped	individu-
als	by	obesity	status,	based	on	body	mass	index	(BMI),	including	lean	(BMI	18–	
124.9),	overweight	(BMI	25–	29.9),	or	obese	(BMI	≥30).	We	analyzed	differences	
in	 microbiome	 composition,	 community	 inter-	relationships,	 and	 predicted	 mi-
crobial	function	by	obesity	status.	We	found	that	salivary	bacterial	communities	
of	lean	and	obese	individuals	were	compositionally	and	phylogenetically	distinct.	
An	increase	in	obesity	status	was	positively	associated	with	strong	correlations	
between	bacterial	taxa,	particularly	with	bacterial	groups	implicated	in	metabolic	
disorders	including	Fretibacterium,	and	Tannerella.	Consumption	of	sweeteners,	
especially	 xylitol,	 significantly	 influenced	 compositional	 and	 phylogenetic	 di-
versities	of	salivary	and	fecal	bacterial	communities.	In	addition,	obesity	groups	
exhibited	 differences	 in	 predicted	 bacterial	 metabolic	 activity,	 which	 was	 cor-
related	 with	 host’s	 metabolite	 concentrations.	 Overall,	 obesity	 was	 associated	
with	 distinct	 changes	 in	 bacterial	 community	 dynamics,	 particularly	 in	 saliva.	
Consideration	 of	 microbiome	 community	 structure	 and	 inclusion	 of	 salivary	
samples	may	improve	our	ability	to	understand	pathways	linking	microbiota	to	
obesity	and	cardiometabolic	disease.
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1 	 | 	 INTRODUCTION

Obesity	 is	 a	 growing	 worldwide	 epidemic	 and	 is	 linked	
to	a	range	of	health	issues	including	hypertension,	type	2	
diabetes,	asthma,	coronary	heart	disease,	Alzheimer’s	dis-
ease,	and	cancer	(Alford	et	al.,	2018;	Avgerinos	et	al.,	2019;	
Seganfredo	et	al.,	2017;	Thompson	et	al.,	2007;	Wahba	&	
Mak,	 2007).	 Known	 risk	 factors	 include	 imbalances	 be-
tween	 calorie	 intake	 and	 expenditure,	 genetics,	 stress,	
and	 disruptions	 in	 the	 endocrine	 system	 (Han	 &	 Lean,	
2016;	 Seganfredo	 et	 al.,	 2017);	 however	 much	 remains	
unknown.	Better	characterization	of	mechanisms	predis-
posing	to	obesity	could	enable	novel	prevention	and	treat-
ment	strategies.

The	 composition	 of	 an	 individual’s	 microbiota	 is	 in-
creasingly	being	recognized	as	a	contributor	to	obesity	risk	
(Benahmed	et	al.,	2021;	Crovesy	et	al.,	2020;	Stanislawski	
et	al.,	2019).	Microbiota	can	influence	the	host’s	metabolic	
phenotype	both	by	directly	affecting	energy	and	nutrient	
availability	 (Jumbo-	Lucioni	 et	 al.,	 2010;	 Kaoutari	 et	 al.,	
2013;	LeBlanc	et	al.,	2013;	Shortt	et	al.,	2018;	Turnbaugh	
et	al.,	 2006),	and	 through	modulation	of	 signaling	path-
ways	 (Bindels	 et	 al.,	 2013;	 Davison	 et	 al.,	 2017;	 Fellows	
et	al.,	2018;	Kimura	et	al.,	2013;	Mohammadkhah	et	al.,	
2018;	 Overby	 &	 Ferguson,	 2021;	 Tilg	 &	 Moschen,	 2016;	
Ye	et	al.,	2017).	Previous	studies	suggested	that	the	fecal	
symbiotic	bacterial	community	of	obese	individuals	is	less	
diverse	than	that	of	 lean	individuals	(Stanislawski	et	al.,	
2019;	 Tilg	 et	 al.,	 2009).	 In	 addition,	 the	 abundance	 of	
several	 bacterial	 taxa	 including	 Lactobacillus,	 Pervotella,	
Alistipes,	Akkermansia,	and	others	vary	with	obesity	sta-
tus	(Benahmed	et	al.,	2021;	Crovesy	et	al.,	2020).	Salivary	
microbiota	of	lean	and	obese	individuals	also	differ	in	di-
versity	 and	 composition	 (Araujo	 et	 al.,	 2020;	 Benahmed	
et	al.,	2021;	Andrade	et	al.,	2020;	Raju	et	al.,	2019;	Si	et	al.,	
2017).	 The	 abundance	 of	 several	 salivary	 bacterial	 taxa	
including	Campylobacter,	Aggregatibacter,	and	Veillonella	
was	 reported	 to	 be	 positively	 associated	 with	 obesity	
(Balakrishnan	et	al.,	2021;	Schacher	et	al.,	2007;	Szafrański	
et	 al.,	 2015).	 Higher	 abundances	 of	 Bacteroidetes,	
Spirochaetes,	and	Firmicutes	were	observed	in	lean	indi-
viduals	(Benahmed	et	al.,	2021;	Janem	et	al.,	2017;	Sohail	
et	 al.,	 2019).	 However,	 data	 are	 contradictory,	 even	 for	
rather	 abundant	 bacteria	 taxa.	 For	 example,	 the	 abun-
dance	of	intestinal	Lactobacillus	was	reported	to	be	both	
positively	 and	 negatively	 associated	 with	 obesity	 (Azad	
et	al.,	2018;	Crovesy	et	al.,	2020;	Khalili	et	al.,	2019;	Million	
et	al.,	2012).	While	some	variability	might	be	explained	by	
differences	 in	 diet,	 geographical	 location,	 or	 analytical	
methods,	these	discrepancies	may	be	due	in	part	to	com-
plex	 interactions	 between	 microbial	 community	 mem-
bers,	where	the	metabolic	activity	of	individual	bacterial	
taxa	can	vary	based	on	the	activity	of	other	microbes	in	the	

community	(Estrela	et	al.,	2016;	Morris,	2015;	Thommes	
et	al.,	2019;	Zomorrodi	&	Segrè,	2017).	Consideration	of	
interactions	between	members	of	microbiota	might	be	es-
sential	 to	 improve	 the	 identification	of	bacterial	mecha-
nisms	underlying	obesity.

We	 hypothesized	 that	 the	 presence	 of	 obesity,	 in	 the	
absence	 of	 known	 disease,	 would	 associate	 with	 differ-
ences	 in	microbiome	composition	and	 function.	We	 fur-
ther	hypothesized	that	community	structure	and	bacterial	
inter-	relationships	would	differ	by	obesity	status.	We	eval-
uated	 the	differences	 in	compositional	and	phylogenetic	
diversity	of	salivary	and	fecal	microbiota	between	obesity	
groups	in	a	well-	characterized	sample	of	healthy	individ-
uals.	 We	 examined	 interactions	 between	 bacterial	 taxa	
based	on	the	obesity	status	of	the	host,	and	showed	that	
predicted	bacterial	metabolic	activity	varies	between	obe-
sity	groups	and	is	correlated	with	intestinal	and	circulat-
ing	metabolite	concentrations.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study population

We	 analyzed	 data	 from	 the	 ABO	 Glycoproteomics	 in	
Platelets	and	Endothelial	Cells	(ABO)	Study	(n = 135)	as	
described	previously	(Bagheri	et	al.,	2021;	Ferguson	et	al.,	
2018;	Tang	et	al.,	2019).	Demographic	information	is	pro-
vided	in	Supplement	Table	0.	Briefly,	healthy	non-	pregnant	
and	 non-	lactating	 women	 and	 men	 were	 recruited	 to	 a	
cross-	sectional	study.	Individuals	were	non-	smokers,	with	
no	medication	or	supplement	use	(apart	from	oral	contra-
ceptives),	and	no	clinical	disease.	Participants	completed	
dietary	profiling	(validated	3-	day	food	records,	and	DHQ	II	
food	frequency	questionnaires	[FFQ]),	and	provided	stool,	
saliva,	and	blood	samples.	Height	and	weight	were	meas-
ured	at	the	study	visit.	Individuals	were	classified	based	on	
body	mass	index	(BMI,	weight	(kg)/height	(m)-	squared),	
including	lean	(BMI	18–	24.9;	fecal	samples	n = 76,	saliva	
samples	 n  =  49),	 overweight	 (BMI	 25–	29.9;	 fecal	 sam-
ples	n = 34,	saliva	samples	n = 19),	or	obese	 (BMI	≥30,	
fecal	samples	n = 25,	saliva	samples	n = 16),	 to	explore	
differences	in	composition	and	function	of	microbiota	by	
obesity.	 All	 participants	 provided	 written	 informed	 con-
sent.	The	study	was	approved	by	the	Institutional	Review	
Boards	of	the	University	of	Pennsylvania	and	Vanderbilt	
University.

2.2	 |	 Sample profiling

As	 we	 have	 previously	 described,	 16S	 rDNA	 sequenc-
ing	 of	 the	 bacterial	 V4	 fragment	 was	 performed	 on	
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Illumina	 MiSeq	 platform	 using	 135	 fecal	 and	 85	 saliva	
samples	 to	 identify	 bacterial	 community	 composition	
(Tang	 et	 al.,	 2019).	 Global	 metabolomics	 profiling	 of	
fecal	and	plasma	samples,	 from	a	subset	of	 individuals	
(n = 75)	was	performed	at	Metabolon	(Metabolon	Inc.,	
Morrisville,	NC,	United	States),	as	previously	described	
(Tang	et	al.,	2019).

2.3	 |	 Pre- analysis processing

2.3.1	 |	 Sequences	
alignment	and	normalization

Pre-	analysis	processing	of	16SrRNA	reads	was	performed	
with	R	v4.0.2	(Team	R.	Core,	2019).	Demultiplexed	se-
quences	were	 filtered,	 forward	and	reverse	 reads	were	
merged,	 and	 resulted	 sequences	 were	 assigned	 to	 am-
plicon	 sequence	 variants	 (ASVs),	 with	 the	 default	 set-
tings	of	DADA2	pipeline	v1.18.0	(Callahan	et	al.,	2016).	
Chimeric	sequences	were	also	removed	with	the	dada2	
package	v1.18.0	(Callahan	et	al.,	2016).	Sequence	vari-
ants	 were	 assigned	 taxonomy	 with	 dada2	 and	 SILVA	
v138.1	 database	 (Callahan	 et	 al.,	 2016;	 Quast	 et	 al.,	
2012).	 ASVs	 counts	 were	 normalized	 with	 cumula-
tive	 sum	 scaling	 method	 implemented	 in	 the	 metage-
nomeSeq	v1.32.0	package	(Paulson	et	al.,	2013).	In	the	
salivary	samples,	we	identified	1932	ASVs	that	belonged	
to	12	phyla,	19	classes,	44	orders,	70	families,	134	gen-
era,	 and	 229	 bacterial	 species.	 In	 our	 fecal	 samples,	
we	 identified	5000	ASVs	that	belonged	to	16	phyla,	26	
classes,	55	orders,	86	families,	270	genera,	and	338	bac-
terial	species.

2.3.2	 |	 Alpha	diversity

Normalized	ASVs	counts	were	used	to	calculate	species	
richness,	 Shannon,	 and	 Gini–	Simpson	 alpha	 diversity	
indices	with	 the	vegan	v2.5.7	package	 (Oksanen	et	al.,	
2009).

2.3.3	 |	 Beta	diversity

Bray-	Curtis	 distances	 were	 calculated	 with	 vegan	 v2.5.7	
(Oksanen	 et	 al.,	 2009).	 An	 unrooted	 neighbor-	joining	
tree	 was	 computed	 with	 the	 ape	 package	 v5.5	 (Paradis	
et	al.,	2004).	The	tree	was	optimized	based	on	a	general-
ized	time-	reversible	model	implemented	in	the	phangorn	
v2.5.5	 package	 (Schliep	 2019;	 Schliep,	 2011).	 Lastly,	
weighted	and	unweighted	Unifrac	distances	between	each	

sample	were	calculated	with	the	phyloseq	v1.30.0	package	
(McMurdie	&	Holmes,	2013).

2.3.4	 |	 Functional	potential

Functional	 potential	 of	 the	 bacterial	 communities	 was	
predicted	with	PICRUSt2	according	to	the	default	pipeline	
(Douglas	et	al.,	2020).	Predictions	were	made	for	Enzyme	
Commission	numbers	(EC),	Kyoto	Encyclopedia	of	Genes	
and	 Genomes	 orthologs	 (KO),	 and	 MetaCyc	 pathways	
(Bairoch,	2000;	Douglas	et	al.,	2020;	Kanehisa,	2000;	Karp	
et	al.,	2002).	In	accordance	with	PICRUSt2	authors’	rec-
ommendations,	the	resulting	data	were	transformed	with	
the	centered-	log	ratio	transformation	implemented	in	the	
ALDEx2	v1.24.0	package	(Gloor,	2015).

2.4	 |	 Statistical analysis

Statistical	analysis	and	data	visualization	was	done	with	
R	v3.6.1	(Team	R.	Core,	2019).	Beta	diversity	distances	be-
tween	obesity	groups	were	compared	with	pairwise	per-
mutational	multivariate	analysis	of	variance,	based	on	the	
vegan	 package	 v2.5.7	 (Oksanen	 et	 al.,	 2009).	 The	 differ-
ence	in	alpha	diversity	measurements	was	evaluated	with	
Wilcoxon	 signed-	rank	 test,	 implemented	 in	 the	 rstatix	
v0.7.0	 package	 (Kassambara,	 2021).	 In	 order	 to	 evaluate	
if	 the	obesity	groups	can	be	classified	based	on	differen-
tial	 abundance	 (taxonomic	 units	 with	 the	 differential	
abundance	 of	 less	 than	 20	 amplicons	 in	 the	 whole	 data	
set,	were	filtered	out,	in	order	to	avoid	constant	variables	
across	the	groups)	of	bacterial	taxa	and	inferred	functional	
abundances	 (based	 on	 EC,	 KO,	 and	 MetaCyc	 classifica-
tion),	we	used	linear	discriminant	analysis,	implemented	
in	the	MASS	package	v7.3-	51.4	(Venables	&	Ripley,	2002).	
In	 addition,	 we	 repeated	 a	 linear	 discriminant	 analysis	
using	only	the	15	most	abundant	bacterial	taxa,	in	order	
to	evaluate	if	the	dominant	bacterial	taxa	were	sufficient	
for	 discrimination	 of	 the	 communities,	 with	 the	 obesity	
status.	The	results	were	visualized	by	plotting	the	first	and	
second	 linear	discriminants,	with	 the	ggplot2	v3.2.1	and	
the	ggpubr	v0.4.0	packages	(Kassambara	&	Kassambara,	
2020;	 Wickham,	 2016).	 The	 difference	 in	 differential	
abundances	of	bacterial	taxa	and	predicted	ECs,	KOs,	and	
MetaCyc	pathways,	between	obesity	groups	was	evaluated	
with	a	pairwise	 t-	test	 function,	 implemented	 in	R	v3.6.1	
(Team	 R.	 Core,	 2019).	 The	 correlations	 between	 differ-
ential	abundances	of	bacterial	 taxa	were	calculated	with	
Spearman’s	rank	correlation	test,	 included	 in	 the	Hmisc	
v4.5.0	 package	 (Harrell	 &	 Harrell,	 2019).	 Resulted	 cor-
relation	 matrices	 were	 used	 to	 construct	 network	 plots,	
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using	 the	 corrr	 v0.4.3	 package	 (Kuhn	 &	 Jackson,	 2020).	
In	addition,	the	absolute	values	of	correlation	coefficients	
were	 compared	 between	 obesity	 groups	 with	 a	 pairwise	
Wilcoxon	 signed-	rank	 test,	 implemented	 in	 the	 rstatix	
v.7.0	 package	 (Kassambara,	 2021).	 The	 influence	 of	 133	
recently	consumed	(from	3-	day	food	records)	and	185	ha-
bitually	consumed	(from	FFQ)	nutrients	on	beta	diversity	
distances	was	evaluated	with	permutational	multivariate	
analysis	 of	 variance	 using	 a	 quadratic	 model	 (Oksanen	
et	al.,	2009).	The	quadratic	model	was	used	as	most	 liv-
ing	organisms,	including	bacteria	have	an	optimal	range	
of	environmental	conditions	rather	than	a	linear	relation-
ship	(Bombin	&	Reed,	2016;	Kindt	&	Coe,	2005;	Leboffe	
&	Pierce,).	The	difference	in	nutritional	profiles	between	
obesity	groups	was	evaluated	with	the	adonis	function	on	
Euclidean,	Bray-	Curtis,	and	non-	binary	Jaccard	distances	
(Oksanen	et	al.,	2009).

For	enrichment	analysis,	we	calculated	the	mean	abun-
dance	of	each	KEGG	ortholog	for	obesity	groups	and	used	
them	as	input	for	MicrobiomeAnalyst	(2021-	07-	01)	shot-
gun	data	profiling	tool,	with	the	default	settings	(Dhariwal	
et	 al.,	 2017).	 False	 discovery	 rate	 (FDR)	 p-	values	 were	
adjusted	 using	 the	 Benjamini–	Hochberg	 correction,	 im-
plemented	 in	 rstatix	v0.7.0	package	 (Kassambara,	2021).	
We	 note	 that	 usage	 of	 any	 particular	 FDR	 threshold	 is	
ambiguous	and	often	varies	between	microbiome	studies;	
weaker	 correlations	 that	 fail	 to	 hold	 up	 to	 p	 adjustment	
methods	 often	 have	 biological	 relevance.	 Premature	 re-
jection	of	associations	falling	below	conservative	p-	value	
thresholds	 may	 lead	 to	 loss	 of	 biologically	 meaning-
ful	data.	 (Althouse	&	Soman,	2017;	Bombin	et	al.,	2020;	
Bruce-	Keller	et	al.,	2015;	Jehrke	et	al.,	2018;	Pawitan	et	al.,	
2005;	Wu	et	al.,	2015).	For	 this	 reason,	 statistical	 results	
below	 0.05	 p-	value	 threshold	 were	 considered	 to	 be	 sig-
nificant.	 However,	 taking	 into	 account	 the	 difference	 in	

opinions	and	for	the	readers’	convenience,	we	report	both	
unadjusted	and	FDR-	adjusted	p-	values	in	supplementary	
data.

3 	 | 	 RESULTS

3.1	 |	 Lean, overweight, and obese 
individuals can be separated into distinct 
groups based on their oral and intestinal 
microbiota

Evaluating	 beta	 diversity	 distances,	 we	 observed	 that	
salivary	 microbiota	 communities	 of	 obese	 and	 lean	 in-
dividuals	 were	 significantly	 different	 as	 measured	 with	
Bray-	Curtis	and	Weighted	Unifrac	distances	(Supplement	
Table	 1).	 Based	 on	 linear	 discriminant	 analysis	 (non-	
overlapping	 confidence	 ellipses),	 obesity	 classes	 were	
separated	by	the	differential	abundances	of	bacterial	ASVs	
(Figure	1a).	Obesity	groups	were	also	clearly	characterized	
based	on	the	differential	abundance	of	microbial	species,	
genera,	families,	and	orders	but	weaker	based	on	classes	
and	phyla	(Supplement	Figure	1).

In	fecal	samples,	we	did	not	observe	a	significant	dif-
ference	 in	 beta	 diversity	 distances	 between	 any	 of	 the	
obesity	groups	(Supplement	Table	1).	However,	based	on	
a	 linear	 discriminant	 analysis,	 obesity	 groups	 could	 be	
classified	based	on	the	differential	abundance	of	bacterial	
ASVs	(Figure	1b).	Obesity	groups	were	also	clearly	char-
acterized	based	on	the	differential	abundance	of	bacterial	
species,	 genera,	 families,	 and	 orders	 but	 weaker	 at	 class	
and	 phylum	 ranks	 (Supplemental	 Figure	 2).	We	 did	 not	
observe	any	significant	differences	in	alpha	diversity	indi-
ces	between	obesity	groups	in	saliva	or	feces	(Supplement	
Table	2).

F I G U R E  1  Obesity	groups	can	be	discriminated	by	the	abundance	of	salivary	or	fecal	microbiota.	Linear	discriminant	analysis	of	(a)	
ASVs	identified	in	salivary	samples	(b)	ASVs	identified	in	fecal	samples.	ASVs	with	abundance	of	less	than	20	sequences	were	filtered	out.	
Obesity	groups	are	represented	by	color,	lean	group	by	red,	overweight	group	by	green,	and	obese	group	by	blue.	Confidence	ellipses	are	
shaded.	Normal	data	ellipses	are	unfilled	and	leveled	to	include	50%	of	the	samples
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3.2	 |	 Obesity status influences the 
differential abundance of individual 
bacterial taxa

3.2.1	 |	 In	saliva

In	 saliva,	 we	 observed	 that	 abundances	 of	
Campylobacterota,	Firmicutes,	and	Spirochaetota	were	
significantly	 different	 between	 obesity	 groups	 at	 the	
phylum	rank.	Obesity	groups	were	 significantly	differ-
ent	in	the	differential	abundances	of	5	bacterial	classes,	
10	 orders,	 17	 families,	 33  genera,	 52  species,	 and	 409	
individual	 ASVs	 (Supplement	 Table	 3A).	 Across	 all	
taxonomic	 ranks,	 obese	 and	 lean	 individuals	 had	 the	
highest	 number	 of	 taxa	 that	 were	 significantly	 differ-
ent	in	their	differential	abundances	(Supplement	Table	
3A).	We	evaluated	which	of	the	15 most	abundant	bac-
terial	 taxa	 were	 the	 most	 influential	 for	 defining	 each	
of	 the	 obesity	 groups	 with	 a	 linear	 discriminant	 anal-
ysis.	 At	 the	 genera	 taxonomic	 rank,	 Campylobacter,	
Veillonella,	 Aggregatibacter,	 and	 Prevotella	 defined	 the	
obese	group	 (Figure	2).	Although	 lean	and	overweight	
groups	were	not	distinct	 from	each	other,	Actinomyces	
and	Haemophilus	were	characteristic	for	the	overweight	
group	(Figure	2).	Overall,	we	note	 that	across	all	 taxo-
nomic	ranks	the	15 most	abundant	bacteria	taxa	contrib-
ute	 only	 modestly	 to	 discrimination	 of	 obesity	 groups	
(Supplemental	Figure	3).

3.2.2	 |	 In	feces

In	 feces,	 at	 the	 phylum	 rank,	 only	 differential	 abun-
dance	 of	 Fusobacteriota	 was	 significantly	 differ-
ent	 between	 overweight	 and	 lean	 groups.	 Obesity	
groups	 were	 significantly	 different	 in	 the	 differential	
abundances	 of	 2	 bacterial	 classes,	 8	 orders,	 10	 fami-
lies,	 35  genera,	 45  species,	 and	 690	 individual	 ASVs	
(Supplement	 Table	 3B).	 The	 highest	 number	 of	 sig-
nificant	differences	between	groups	varied	with	taxo-
nomic	 rank	 but	 was	 always	 between	 lean	 and	 one	 of	
the	 overweight/obese	 groups.	 Linear	 discriminant	
analysis	 indicated	 that	 at	 the	 genus	 taxonomic	 rank	
Agathobacter	 and	 Parabacteroides	 were	 influential	
in	 discriminating	 obese	 from	 lean	 groups	 (Figure	 2).	
Although	lean	and	overweight	groups	were	not	clearly	
separated,	 lean	group	was	primarily	characterized	by	
Blautia	and	Ruminococcus	(Figure	2).	Similar	to	what	
we	 observed	 in	 salivary	 samples,	 the	 most	 abundant	
fecal	bacteria	taxa	were	not	the	most	influential	vari-
ables	for	discriminating	samples	based	on	obesity	sta-
tus	(Supplement	Table	4).

3.3	 |	 The number of strong correlations 
between bacterial taxa varies by 
obesity status

We	 hypothesized	 that	 microbial	 community	 inter-	
relationships,	 as	 evidenced	 by	 correlations	 between	
taxa,	 would	 differ	 by	 obesity	 status.	 We	 assessed	 the	
number	of	 strong	correlations	 (> =  |0.7|)	between	dif-
ferential	 abundances	 of	 microbial	 taxa	 in	 saliva	 and	
stool	samples	by	obesity	group	and	 found	evidence	 for	
increasing	 inter-	dependence	 in	 the	 setting	 of	 obesity	
(Figure	 3).	 Among	 microbiota	 genera	 in	 saliva,	 there	
were	67 strong	correlations	in	the	obese	group,	32	in	the	
overweight,	and	only	five	strong	correlations	in	the	lean	
group.	 The	 absolute	 means	 of	 correlation	 coefficients	
were	significantly	different	between	all	groups,	and	this	
observed	 pattern	 remained	 across	 all	 taxonomic	 ranks	
(Supplement	Table	4).	We	observed	a	similar	pattern	in	
fecal	samples,	with	52	strong	correlations	between	mi-
crobiota	genera	in	the	obese	group,	20	in	the	overweight	
group,	and	only	8	 in	 the	 lean	group.	The	absolute	val-
ues	of	the	correlation	coefficients,	for	differential	abun-
dances	of	the	bacterial	taxa	were	significantly	different	
between	all	obesity	groups.	Obese	individuals	had	more	
strong	correlations	between	bacterial	taxa	than	lean	in-
dividuals	across	all	phylogenetic	ranks	except	phylum,	
at	 which	 no	 group	 had	 strong	 inter-	bacterial	 correla-
tions.	(Supplement	Table	4).

3.4	 |	 Nutritional factors influencing 
bacterial communities

We	 examined	 recent	 (3-	day	 food	 records)	 and	 habitual	
(food	 frequency	 questionnaire)	 dietary	 consumption	 by	
obesity	 status,	 and	 found	 that	 overall	 nutritional	 pro-
files	were	not	significantly	different	between	the	obesity	
groups.	 We	 then	 examined	 the	 relationships	 between	
dietary	variables	and	the	overall	bacterial	community	in	
all	 individuals,	 to	 identify	 influential	 nutrients	 from	 re-
cent	and	habitual	consumption.	We	applied	Bray-	Curtis,	
weighted	 Unifrac,	 and	 unweighted	 Unifrac	 distances,	
and	 assessed	 both	 linear	 and	 quadratic	 relationships.	
For	recently-	consumed	nutrient,	xylitol	and	pectins	had	
significant	 linear	relationships	across	all	 three	methods,	
while	 inositol,	 glucose	 and	 omega-	3	 polyunsaturated	
fatty	acids	approached	significance	for	quadratic	relation-
ships	across	all	three	methods	(Supplement	Table	5).	For	
habitually-	consumed	 nutrients,	 no	 nutrients	 displayed	
consistent	 linear	relationships	across	all	methods,	while	
for	 quadratic	 relationships,	 sorbitol	 and	 pinitol,	 as	 well	
as	 dairy	 cheese	 and	 yogurt	 were	 consistently	 associated	
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(Supplement	Table	6).	In	the	fecal	bacterial	community,	
recently-	consumed	pectins,	folate,	and	fiber	had	consist-
ent	significant	linear	relationships,	while	oxalic	acid,	for-
mononetin,	biochanin	A,	and	the	ratio	of	polyunsaturated	
to	 saturated	 fat	 had	 consistent	 quadratic	 relationships	
(Supplement	 Table	 5).	 For	 habitually-	consumed	 foods,	
there	 were	 consistent	 linear	 relationships	 with	 cheese	
and	vegetables,	in	addition	to	vegetable-	derived	nutrients	
(beta	carotene,	oxalic	acid,	Vitamin	K).	Significant	quad-
ratic	relationships	were	observed	for	grains	and	processed	
meats,	in	addition	to	xylitol,	caffeine,	sodium,	and	potas-
sium	(Supplement	Table	6).

3.5	 |	 Analysis of inferred metabolic 
pathways reveals enrichment in 
2- oxocarboxylic acid metabolism 
in lean individuals in oral and 
intestinal microbiota

We	hypothesized	that	the	functional	activity	of	microbiota,	
as	predicted	using	PICRUSt2,	would	differ	by	obesity	sta-
tus.	We	assessed	differences	in	inferred	function	between	
obesity	 groups,	 and	 found	 that	 obesity	 served	 as	 a	 good	
classifier	for	enzyme	counts	(ECs),	KEGG	orthologs	(KOs),	
and	MetaCyc	pathways	abundances	 in	saliva	 (Figure	4).	
There	 were	 969	 significant	 differences	 in	 ECs,	 3915	 in	
KOs	and	177	significant	differences	in	the	abundance	of	
MetaCyc	 pathways	 across	 all	 groups	 (Supplement	 Table	
7).	In	all	cases,	lean	and	obese	individuals	had	the	highest	
number	of	differences.	2-	oxocarboxylic	acid	metabolism,	
terpenoid-	quinone	biosynthesis,	and	D-	glutamine	and	D-	
glutamate	metabolism	KEGG	pathways	were	enriched	in	
lean	individuals	but	not	in	the	obese	group	(Supplement	

Table	 8).	 The	 obese	 group	 was	 uniquely	 enriched	 in	
fluorobenzoate,	sulfur,	and	several	amino	acid	metabolic	
pathways.

Similarly,	obesity	groups	could	be	characterized	based	
on	the	abundance	of	MetaCyc	pathways,	KOs,	and	ECs	in	
fecal	samples	(Figure	4).	We	observed	128	significant	dif-
ferences	between	the	obesity	groups	in	ECs,	391	in	KOs,	
and	19	in	MetaCyc	pathways	(Supplement	Table	7),	spread	
across	lean,	overweight,	and	obese	groups.	The	lean	group	
was	 uniquely	 enriched	 in	 2-	oxocarboxylic	 acid	 metab-
olism,	 D-	glutamine	 and	 D-	glutamate	 metabolism,	 and	
pentose	 and	 glucuronate	 interconversions,	 when	 com-
pared	 with	 obese	 group.	 The	 obese	 group	 was	 enriched	
in	C5-	branched	dibasic	acid,	 lipoic	acid,	and	one-	carbon	
KEGG	metabolic	pathways	(Supplement	Table	8).

3.6	 |	 Abundance of inferred 
bacterial metabolic enzymes/pathways 
influences the host’s metabolites’ 
concentrations

We	 were	 interested	 in	 whether	 predicted	 functional	 ac-
tivity	 would	 associate	 with	 measured	 metabolic	 activ-
ity,	 as	 assessed	 by	 metabolomic	 profiling	 of	 plasma	 and	
stool.	We	observed	high	numbers	of	correlations	with	pre-
dicted	saliva	microbial	activity	across	all	three	databases	
(EC:	78,635	with	plasma,	82,722	with	stool;	KO:	249,473	
plasma,	 263,616	 stool;	 MetaCyc:	 15,633	 plasma,	 17,915	
stool).	The	highest	number	of	correlations	was	observed	
with	 valerate	 and	 isoeugenol	 sulfate	 in	 plasma	 samples	
and	with	inosine	in	stool	samples	(Supplement	Table	9).	
We	 similarly	 observed	 high	 numbers	 of	 correlations	 be-
tween	predicted	 stool	microbial	activity	and	metabolites	

F I G U R E  2  Obese	and	lean	groups	can	be	characterized	by	the	abundance	of	dominant	bacteria	genera.	Linear	discriminant	analysis	
of	the	15 most	abundant	bacterial	genera	identified	in	(a)	Salivary	samples	(b)	Fecal	Samples.	Obesity	groups	are	represented	by	color,	
lean	group	by	red,	overweight	group	by	green,	and	obese	group	by	blue.	The	higher	abundance	of	bacterial	genera	in	the	obesity	groups	is	
indicated	by	the	direction	of	the	vector	rays.	The	intensity	of	vector	rays’	color	corresponds	to	the	strength	of	the	impact.	Confidence	ellipses	
are	shaded.	Normal	data	ellipses	are	unfilled	and	leveled	to	include	50%	of	the	samples
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(EC:	92,852	with	plasma,	109,830	with	stool;	KO:	299,557	
plasma,	 332,789	 stool;	 MetaCyc:	 18,179	 plasma,	 17,728	
stool).	The	highest	number	of	correlations	was	observed	
with	1-	palmitoyl-	GPE	and	CMPF	in	plasma	samples	and	
steviol	in	stool	samples	(Supplement	Table	9).

4 	 | 	 DISCUSSION

Obesity	has	been	linked	to	alterations	in	microbiota,	how-
ever,	 the	 relative	 importance	 of	 gut	 and	 oral	 microbiota	
is	 unclear.	 We	 aimed	 to	 identify	 microbial	 signatures	 of	
obesity	using	both	stool	and	salivary	samples	 in	healthy	
individuals	 classified	 as	 normal	 weight,	 overweight	 or	
obese	based	on	their	BMI.	We	observed	that	obesity	status	
was	 associated	 with	 differences	 in	 bacterial	 community	
composition	 and	 shifts	 in	 inter-	microbial	 relations	 that	
were	especially	evident	 in	the	salivary	bacterial	commu-
nity.	Although	salivary	and	fecal	microbiota	were	largely	
impacted	by	different	nutrients,	dietary	sweeteners	were	
associated	 with	 both	 composition	 and	 phylogenetic	

diversity	of	both	the	oral	and	gut	bacterial	communities.	
In	addition,	samples	from	obese	and	lean	individuals	were	
enriched	in	several	unique	metabolic	pathways,	 inferred	
activity	 of	 which	 was	 correlated	 with	 plasma	 and	 stool	
metabolite	concentrations.

4.1	 |	 Obesity influences microbial 
community composition, especially 
in saliva

In	agreement	with	published	research,	we	observed	that	
oral	bacterial	community	composition	was	distinct	be-
tween	 lean	 and	 obese	 individuals	 (Araujo	 et	 al.,	 2020;	
Andrade	 et	 al.,	 2020;	 Raju	 et	 al.,	 2019;	 Si	 et	 al.,	 2017).	
In	 our	 work,	 we	 also	 observed	 that	 the	 difference	 in	
salivary	 bacterial	 composition	 between	 obese	 and	 lean	
individuals	 extends	 to	 phylogenetic	 diversity	 measure-
ments.	 Consistent	 with	 previous	 research,	 we	 also	 ob-
served	 some	 differences	 in	 gut	 bacterial	 communities	
between	obese	and	 lean	groups,	however	 in	our	work,	

F I G U R E  3  Number	of	strong	connections	between	bacterial	genera	increases	with	the	obesity	status.	Spearman’s	rank	correlation	
network	between	(a)	Salivary	bacterial	genera	of	lean	individuals;	(b)	Salivary	bacterial	genera	of	overweight	individuals;	(c)	Salivary	
bacterial	genera	of	obese	individuals;	(d)	Fecal	bacterial	genera	of	lean	individuals;	(e)	Fecal	bacterial	genera	of	overweight	individuals;	
(f)	Fecal	bacterial	genera	of	obese	individuals.	For	(a–	c)	included	genera	had	a	minimum	abundance	of	30 sequences	and	for	(d–	f)	minimum	
abundance	of	20 sequences
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the	 differences	 were	 not	 supported	 by	 Bray-	Curtis	 or	
weighted	 Unifrac	 distances	 (Del	 Chierico	 et	 al.,	 2018;	
Palmas	 et	 al.,	 2021).	 There	 were	 no	 significant	 differ-
ences	in	overall	dietary	consumption,	as	assessed	using	
both	 3-	day	 food	 records	 and	 food	 frequency	 question-
naires,	 suggesting	 that	 differences	 in	 microbiota	 were	
not	attributable	to	differences	in	diet	between	lean,	over-
weight	or	obese	individuals.	Our	results	suggest	that	at	
the	 level	 of	 the	 whole	 community,	 salivary	 microbiota	
composition	better	reflects	the	difference	in	obesity	sta-
tus	than	fecal	microbiota.

With	the	analysis	restricted	to	the	dominant	bacterial	
taxa,	 we	 observed	 a	 strong	 influence	 of	 Campylobacter,	
Aggregatibacter,	 Veillonella,	 and	 Prevotella	 on	 character-
izing	 the	 obese	 group	 in	 salivary	 samples.	 Interestingly,	
all	of	 these	bacterial	genera	have	been	shown	to	be	cor-
related	not	only	with	obesity	but	also	with	oral	diseases,	
especially	periodontitis	(Balakrishnan	et	al.,	2021;	Durbán	
et	al.,	2013;	Maciel	et	al.,	2016;	Mashima	et	al.,;	Schacher	
et	al.,	2007;	Szafrański	et	al.,	2015).	Considering	the	whole	
bacterial	community	(abundance	>20	reads),	we	observed	
that	 some	 of	 the	 bacteria	 taxa	 with	 lower	 differential	
abundance	 had	 a	 stronger	 effect	 on	 the	 differentiation	
of	 the	 obese	 group	 than	 dominant	 bacteria,	 including	
Shuttleworthia	at	the	genus	rank	and	Mycoplasmataceae	
at	the	family	rank	that	were	also	significantly	more	abun-
dant	in	the	obese	group.	Previous	studies	identified	a	cor-
relation	between	Mycoplasmataceae	and	obesity	(Huang	
et	al.,	2015;	Kim	et	al.,	2021).	Although	to	the	best	of	our	

knowledge,	no	previous	works	associated	Shuttleworthia	
with	 obesity	 in	 humans,	 it	 was	 associated	 with	 obesity	
and	elevated	weight	in	model	organisms	(Henning	et	al.,	
2018;	Lee	et	al.,	2017;	Xie	et	al.,	2016).	In	addition,	simi-
lar	to	what	we	observed	with	the	dominant	bacteria	taxa,	
Shuttleworthia	and	Mycoplasmataceae	are	associated	with	
periodontitis	(Krishnan	et	al.,	2017;	Toyama	et	al.,	2021).

In	 the	 fecal	 samples,	 the	dominant	bacterial	genera	
that	 characterized	 the	 obese	 group	 were	 Agathobacter	
and	 Parabacteroides.	 Agathobacter	 and	 Parabacteroides	
were	shown	to	be	associated	with	metabolic	disorders	in	
humans	and	a	murine	model	(Del	Chierico	et	al.,	2017;	
Liu	et	al.,	2016;	Salah	et	al.,	2019;	Schroeder	et	al.,	2020).	
Similar	to	what	we	observed	in	the	saliva	samples,	sev-
eral	 less	 abundant	 bacterial	 taxa	 that	 were	 previously	
associated	 with	 obesity,	 including	 Mitsuokella	 and	
Neisseria,	 at	 the	 genus	 rank	 and	 Fusobacteriaceae	 and	
Gemellaceae,	at	the	family	rank,	produced	more	impact	
on	the	separation	of	obese	and	lean	categories	than	dom-
inant	bacterial	taxa	(Moreno-	Indias	et	al.,	2016;	Palmas	
et	al.,	2021;	Peters	et	al.,	2018;	Uberos	et	al.,	2010;	Zhang	
et	al.,	2021).	Proportionally	 to	all	 identified	 taxa,	more	
organisms	were	significantly	different	in	abundance	be-
tween	 lean	 and	 obese	 groups	 in	 saliva	 samples,	 when	
compared	with	fecal	samples,	which	might	suggest	that	
sampling	 oral	 microbiota	 may	 be	 more	 informative	 in	
identifying	 microbial	 biomarkers	 of	 obesity.	 Given	 the	
relative	 ease	 of	 collection	 of	 saliva	 as	 compared	 with	
stool,	 this	 could	 facilitate	 increased	 accessibility	 for	

F I G U R E  4  Obesity	groups	can	be	discriminated	by	metabolic	potential	predicted	by	PICRUSt2.	Linear	discriminant	analysis	of	relative	
abundances	of	(a)	ECs	inferred	from	saliva	samples	(b)	KOs	inferred	from	saliva	samples,	(c)	MetaCyc	pathways	inferred	from	saliva	
samples,	(d)	ECs	inferred	from	fecal	samples,	(e)	KOs	inferred	from	fecal	samples,	(f)	MetaCyc	pathways	inferred	from	fecal	samples.	
Obesity	groups	are	represented	by	color,	lean	group	by	red,	overweight	group	by	green,	and	obese	group	by	blue.	Confidence	ellipses	are	
shaded.	Normal	data	ellipses	are	unfilled	and	leveled	to	include	50%	of	the	samples
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research	into	the	microbial	contributors	 to	obesity	and	
cardiometabolic	 disease;	 however,	 this	 remains	 to	 be	
confirmed	in	independent	studies.

4.2	 |	 Number of strong correlations 
between bacterial taxa increases with the 
obesity status

In	 saliva	 samples,	 bacterial	 taxa	 exhibited	 the	 highest	
inter-	microbial	 connectivity	 (strong	 correlations	 ≥0.7)	
in	 obese	 individuals.	 In	 the	 obese	 group,	 the	 highest	
connectivity	 was	 observed	 for	 Fretibacterium	 (8	 connec-
tions),	 F0058	 (7	 connections),	 Mycoplasma	 (7	 connec-
tions),	 and	 Tannerella	 (7	 connections).	 Several	 of	 these	
genera,	 including	 Fretibacterium,	 F0058,	 and	 Tannerella	
were	 shown	 to	 be	 correlated	 with	 metabolic	 disorders	
(Belstrøm,	2020;	Haffajee	&	Socransky,	2009;	Janem	et	al.,	
2017;	Silva-	Boghossian	et	al.,	2018;	Thomas	et	al.,	2021).	
In	addition,	all	of	the	most	connected	bacterial	taxa	were	
associated	with	periodontitis	(Krishnan	et	al.,	2017;	Kwek	
et	 al.,	 1990;	 Nóvoa	 et	 al.,	 2020;	 Silva-	Boghossian	 et	 al.,	
2018).	In	the	lean	group,	the	most	connected	bacteria	ex-
hibited	 less	 strong	 connections	 than	 in	 the	 obese	 group	
and	 were	 Atopobium	 (3	 connections),	 Megasphaera	 (2	
connections),	and	Prevotella	7	(2	connections).	The	abun-
dance	 of	 Atopobium	 was	 shown	 to	 be	 reduced	 in	 obese	
individuals	(Nardelli	et	al.,	2020).	Previous	research	indi-
cated	that	the	abundance	of	Megasphaera	might	increase	
after	anti-	obesity	treatments	(Federico	et	al.,	2016;	Kang	
et	al.,	2019).	Prevotella	was	 shown	 to	be	associated	with	
plant	 rich	 diet	 and	 increase	 in	 abundance	 after	 antidia-
betic	treatment,	however,	the	genus	is	very	diverse	(Ding	
et	al.,	2019;	Jang	et	al.,	2017;	Precup	&	Vodnar,	2019).

In	the	fecal	samples,	the	most	connected	bacterial	gen-
era	identified	in	the	obese	group	were	Christensenellaceae 
R7  group	 (8	 connections)	 and	 Ruminococcaceae 
UCG-	005	 (5	 connections).	 Christensenellaceae R7	 and	
Ruminococcaceae UCG-	005	 were	 shown	 to	 be	 associated	
with	 plasma	 lipoproteins	 and	 triglycerides	 (Vojinovic	
et	al.,	2019).	Ruminococcaceae UCG-	005	was	also	shown	
to	 be	 positively	 correlated	 with	 body	 weight	 and	 weight	
gain	in	a	swine	model	(Gaukroger	et	al.,	2020;	Tang	et	al.,	
2020).	 In	 addition,	 several	 bacterial	 taxa	 previously	 im-
plicated	 in	 metabolic	 disorders,	 including	 Actinomyces,	
Ruminiclostridium,	and	Lachnospiraceae	exhibited	strong	
inter-	bacterial	 correlations	 in	 the	 obese	 but	 not	 in	 the	
lean	group	(Del	Chierico	et	al.,	2018;	Lee	et	al.,	2019;	Liu	
et	al.,	2019;	Zeng	et	al.,	2016).	The	most	connected	genus	
in	lean	individuals	was	Ruminococcaceae NK4A214	(three	
connections).	Previous	research	identified	a	negative	cor-
relation	between	Ruminococcaceae NK4A214	and	high	fat	
diet	and	hypertension	(Calderón-	Pérez	et	al.,	2020;	Yang	

et	al.,	2020).	However,	Christensenellaceae R-	7 group	and	
Ruminococcaceae UCG-	005	were	also	among	a	few	genera	
(total	three)	that	had	more	than	one	strong	correlation	in	
lean	individuals.

The	 impact	 of	 the	 higher	 degree	 of	 microbial	 inter-
connectivity	observed	in	obese	individuals	is	unclear	but	
may	 represent	 a	 shift	 from	 the	 relative	 independence	 of	
bacterial	taxa	to	a	state	more	reliant	on	mutualistic	rela-
tionships.	 Obesity	 is	 often	 associated	 with	 several	 phys-
iological	 and	 environmental	 conditions	 that	 have	 the	
potential	to	act	as	stressors	for	the	microbial	community,	
including	micronutrient	deficiency,	increased	levels	of	re-
active	oxygen	species,	and	an	increase	in	c-	reactive	protein	
concentrations	and	inflammatory	response	in	the	host	(Du	
Clos,	2000;	McMurray	et	al.,	2016;	Via,	2012.;	Yanoff	et	al.,	
2007).	In	accordance	with	the	stress	gradient	hypothesis,	
several	 studies	 demonstrated	 that	 the	 presence	 of	 envi-
ronmental	 stressors	 often	 increases	 positive	 facilitation	
between	microbial	taxa	in	the	community	(Hammarlund	
&	Harcombe,	2019;	Hernandez	et	al.,	2021;	Li	et	al.,	2013;	
Lu	et	al.,	2020).	In	addition,	it	was	demonstrated	that	nu-
tritional	stress	could	increase	the	number	of	connections,	
in	 a	 co-	occurrence	 network	 of	 the	 microbiota	 members	
(Ghosh	 et	 al.,	 2014).	 In	 agreement	 with	 these	 observa-
tions,	we	found	that	in	the	obese	individuals,	almost	all	of	
the	strong	inter-	microbial	correlations	were	positive.

4.3	 |	 Sweeteners and other nutrients 
influence compositional and phylogenetic 
diversity of salivary and fecal bacterial 
communities

We	 observed	 that	 recently	 and	 habitually	 consumed	
nutrients	 influenced	 bacterial	 communities	 across	 all	
individuals.	 For	 salivary	 samples,	 recently	 consumed	
nutrients	 influenced	 the	 bacterial	 community	 more	
than	habitually	consumed	nutrients,	for	both	composi-
tional	and	phylogenetic	beta	diversity	distances.	Sugars	
and	sugar	alcohols,	especially	xylitol,	mannitol,	sorbitol,	
and	pectin	were	especially	influential	factors	impacting	
the	 bacterial	 community,	 based	 on	 compositional	 and	
phylogenetic	 diversity	 measurements.	 Interestingly,	
all	 of	 the	 listed	 compounds	 with	 the	 exception	 of	 pec-
tin	are	used	as	sweeteners	(Chattopadhyay	et	al.,	2014;	
Pasha	 et	 al.,	 2002).	 Although	 the	 effect	 of	 sweeteners	
on	 gut	 microbiota	 was	 extensively	 shown	 in	 humans	
and	 animal	 models,	 the	 studies	 on	 oral	 bacteria	 com-
munity	 are	 limited	 (Gultekin	 et	 al.,	 2020;	 Söderling	 &	
Pienihäkkinen,	 2020).	 Previous	 work	 has	 highlighted	
changes	in	the	oral	microbiota	in	response	to	consump-
tion	 of	 dietary	 sweeteners	 (Štšepetova	 et	 al.,	 2019).	 To	
the	best	of	our	knowledge,	 this	work	 is	 the	 first	report	



10 of 17 |   BOMBIN et al.

specifically	on	the	correlation	between	dietary	sweeten-
ers	 and	 phylogenetic	 diversity	 of	 the	 human’s	 salivary	
bacterial	community.

Fecal	 microbiota	 community	 was	 consistently	 more	
influenced	 by	 habitual	 nutrient	 consumption	 than	 re-
cently	consumed	nutrients,	which	might	suggest	a	more	
stable	 microbial	 community.	 Similar	 to	 the	 saliva	 sam-
ples,	consumption	of	xylitol	and	pectin	 influenced	com-
positional	and	phylogenetic	diversity	of	fecal	microbiota.	
Consumption	 of	 sweeteners,	 including	 xylitol	 was	 re-
ported	 to	 influence	 intestinal	bacterial	 community	com-
position	(Gultekin	et	al.,	2020).	Pectin	consumption	was	
also	shown	to	be	correlated	with	compositional	changes	
in	 the	 intestinal	 microbiota	 (Jiang	 et	 al.,	 2016;	 Larsen	
et	al.,	2019).	In	our	study,	compositional	and	phylogenetic	
measurements	 of	 the	 fecal	 microbiota	 were	 also	 consis-
tently	 influenced	 by	 the	 consumption	 of	 vegetables	 and	
plant-	derived	 compounds	 including	 fiber,	 oxalic	 acid,	
formononetin,	 and	 daidzein.	 Consumption	 of	 fiber,	 for-
mononetin,	and	daidzein	were	shown	to	have	microbiota-	
mediated	 beneficial	 effects	 on	 host’s	 metabolic	 health	
(Carrera-	Quintanar	et	al.,	2018;	Makki	et	al.,	2018).

4.4	 |	 Bacterial communities of obesity 
groups are associated with enrichment 
in predicted metabolic pathways, 
which are correlated with host’s 
metabolite concentrations

In	both	saliva	and	fecal	samples,	the	microbiota	of	the	lean	
individuals	 were	 enriched	 in	 2-	oxocarboxylic	 acid	 me-
tabolism	and	D-	glutamine	and	D-	glutamate	metabolism,	
based	on	functional	prediction.	2-	Oxocarboxylic	acid	me-
tabolism	is	involved	in	ornithine	and	lysine	biosynthesis,	
supplementation	of	which	were	shown	to	have	a	potential	
for	 improving	 metabolic	 health	 (Kalogeropoulou	 et	 al.,	
2009;	 Kanehisa,	 2019;	 Park	 et	 al.,	 2012).	 D-	Glutamine	
concentrations	were	shown	to	be	decreased	 in	obese	 in-
dividuals	 and	 glutamine	 supplementation	 may	 alleviate	
obesity	symptoms	(Abboud	et	al.,	2019;	Ren	et	al.,	2019).	
Metabolic	pathways	enriched	 in	 the	microbiota	of	obese	
individuals	included	one-	carbon	metabolism,	which	was	
previously	 shown	 to	 contribute	 to	 the	 development	 of	
obesity	 (Arnoriaga-	Rodríguez	 et	 al.,	 2021).	 In	 addition,	
steatosis	 was	 shown	 to	 be	 associated	 with	 one	 carbon	
metabolism’s	 gene	 expression	 (Christensen	 et	 al.,	 2010).	
Enrichment	in	other	pathways	such	as	lipoic	acid	metab-
olism	and	degradation	of	valine,	 leucine,	and	 isoleucine	
might	 be	 a	 response	 to	 increase	 in	 oxidative	 stress	 and	
branched-	chain	 amino	 acids	 concentrations,	 often	 asso-
ciated	with	obesity	(Allam-	Ndoul	et	al.,	2015;	Furukawa	
et	al.,	2017;	Rochette	et	al.,	2013).

Multiple	 host’s	 metabolites	 were	 significantly	 cor-
related	with	the	abundance	of	KOs	involved	in	enriched	
pathways.	For	example,	the	abundance	of	KOs,	predicted	
in	salivary	samples	and	 involved	 in	2-	oxocarboxylic	acid	
metabolism	 influenced	 the	 concentration	 of	 435	 plasma	
and	326	stool	metabolites.	Alpha-	ketobutyrate	was	shown	
to	be	a	biomarker	of	insulin	resistance	and	glucose	intoler-
ance	and	in	our	study	exhibited	a	negative	correlation	with	
more	 than	 half	 of	 the	 2-	oxocarboxylic	 acid	 metabolism	
pathway’s	KOs,	predicted	from	saliva	samples	(Gall	et	al.,	
2010;	Syed	Ikmal	et	al.,	2013).	In	addition,	KOs	involved	in	
2-	oxocarboxylic	acid	metabolism	were	correlated	with	ad-
enosine	and	steviol	in	stool	samples,	both	of	which	were	
shown	to	be	beneficial	for	patients	with	metabolic	disor-
ders	(Panagiotou	et	al.,	2018;	Pardo	et	al.,	2017).

Our	study	had	considerable	strengths,	including	the	
availability	 of	 salivary	 and	 fecal	 microbial	 profiling,	
in	 addition	 to	 metabolic	 phenotyping.	There	 were	 also	
some	 limitations	 inherent	 in	 all	 microbiome	 projects	
that	are	based	on	16S	 rRNA	sequencing.	PCR	reaction	
with	 degenerate	 primers	 is	 often	 used	 for	 sequence	
amplification	 (Kumar	 et	 al.,	 2011).	 For	 the	 taxonomic	
identification	 of	 bacterial	 samples	 and	 their	 phyloge-
netic	analysis,	primers	for	nine	hypervariable	16S	rRNA	
regions	 V1-	V9	 are	 broadly	 used	 (Kumar	 et	 al.,	 2011).	
However,	 different	 16S	 regions	 are	 differentially	 con-
served	 between	 bacterial	 groups	 and	 therefore	 might	
better	suit	the	identification	of	particular	bacterial	taxa,	
which	 may	 lead	 to	 discrepancies	 between	 taxa	 identi-
fications	 and	 diversity	 estimations	 (Chakravorty	 et	 al.,	
2007;	Poretsky	et	al.,	2014).	In	addition,	due	to	the	lim-
ited	amplicon	size,	16S	microbiome	analysis	might	have	
a	lower	confidence	in	determining	deep	taxonomic	lev-
els	such	as	genus	and	species	(Chakravorty	et	al.,	2007;	
Poretsky	 et	 al.,	 2014).	 In	 addition,	 different	 sequence	
filtering	 methods,	 reference	 database	 for	 taxonomic	
identification,	and	even	normalization	methods	are	all	
known	to	cause	a	degree	of	bias	between	studies.	Within	
our	work	we	 took	several	precautions	 to	minimize	 the	
limitations	 described	 above.	 In	 order	 to	 identify	 se-
quences	 that	belong	 to	different	bacterial	 taxa,	 instead	
of	using	97%	sequence	similarity	operational	taxonomic	
units	identification	(OTUs),	we	used	amplicon	sequence	
variants	(ASVs),	also	known	as	exact	sequence	variants	
(ESVs)	that	are	based	on	exact	sequence	matches.	This	
methodology	allows	for	more	accurate	taxonomic	iden-
tifications	 even	 with	 short	 sequences	 (Callahan	 et	 al.,	
2017;	 Glassman	 &	 Martiny,	 2018;	 Prodan	 et	 al.,	 2020).	
Furthermore,	knowing	of	 the	 limitations	 in	 taxonomic	
identification	 resolution	 of	 16S	 rRNA	 sequencing,	 we	
have	not	 limited	ourselves	 to	analyzing	the	differences	
in	microbiota	communities	at	any	given	taxonomic	rank.	
Most	 of	 the	 analyses	 were	 repeated	 at	 all	 taxonomic	
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ranks	 and	 main	 conclusions	 are	 based	 on	 the	 patterns	
that	 are	 observed	 at	 multiple	 taxonomic	 ranks	 includ-
ing	 family	and	higher.	 In	addition,	understanding	 that	
different	16S	rRNA	regions	might	be	more	suitable	 for	
identification	of	particular	bacterial	 taxa,	we	 refrained	
from	 the	 direct	 comparison	 of	 fecal	 and	 salivary	 sam-
ples,	restricting	ourselves	to	the	comparisons	of	changes	
in	bacterial	communities	based	on	the	obesity	status	of	
the	host,	separately	for	oral	and	fecal	microbiota.

In	addition,	results	presented	in	this	study	are	largely	
based	on	differential	abundances	of	the	identified	micro-
bial	taxa	and	therefore	might	not	be	interpreted	as	caus-
ative.	 Therefore,	 future	 studies	 would	 be	 necessary	 to	
demonstrate	 the	 directions	 of	 interactions	 between	 the	
host	and	its	oral	and	intestinal	microbiota.

5 	 | 	 CONCLUSIONS

In	 this	 study,	 we	 identified	 differences	 in	 salivary	 and	
fecal	symbiotic	bacterial	communities	based	on	obesity	
status,	 in	 a	 population	 of	 otherwise	 healthy	 individu-
als.	Our	results	suggest	that	inter-	correlations	between	
bacterial	 taxa	 are	 altered	 in	 the	 setting	 of	 obesity	 and	
suggest	distinct	differences	 in	community	dynamics	at	
increasing	levels	of	obesity.	Consideration	of	microbial	
community	 correlation	 structure	 might	 be	 more	 in-
formative	than	measurement	of	relative	abundances	of	
bacteria	taxa	or	diversity	measurements	alone.	In	addi-
tion,	 across	 multiple	 comparisons,	 salivary	 microbiota	
provided	 a	 more	 distinct	 pattern	 of	 differentiation	 be-
tween	obese	and	lean	individuals,	than	fecal	microbiota.	
Previous	studies	have	primarily	focused	on	the	analysis	
of	gut	microbiota	in	obesity,	however,	our	data	suggest	
that	sampling	oral	microbiota	might	provide	further	in-
sights	 and	 patterns	 that	 are	 easier	 to	 detect	 across	 di-
verse	groups.
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